Humoral immunogenicity induced by homologous and heterologous SARS-CoV-2 vaccination schedules

Authors

DOI:

https://doi.org/10.24265/horizmed.2025.v25n2.09

Keywords:

SARS-CoV-2, vaccines, immunity, humoral, IgG antibodies, rapid diagnostic test

Abstract

Objective: To evaluate the humoral immunogenicity induced by homologous and heterologous
vaccination schedules through a comparison of two methods for detecting IgG antibodies against
SARS-CoV-2. Materials and methods: Serum concentrations of specific IgG antibodies targeting
the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were measured. Samples were
collected from 60 individuals who received different COVID-19 vaccination schedules established
by the Peruvian health system. Additionally, 20 pre-pandemic serum samples were retrieved from
a serum bank. An enzyme-linked immunosorbent assay (ELISA), considered the reference standard
test for such measurements, was used. Additionally, OJABIO rapid diagnostic test kit (PRO) was also
employed to qualitatively assess the IgG response. The sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), Cohen’s kappa and Wilson-Brown interval for the PRO
tests were calculated and compared with those obtained for ELISA. Results: Both the qualitative
(PRO) and quantitative (ELISA) tests detected specific IgG antibodies against the spike protein in
all vaccinated individuals. ELISA results indicated that IgG concentrations were not affected by the type of vaccination schedule or the time since the last dose. Prior SARS-CoV-2 infection also had no significant effect on antibody levels. The PRO test demonstrated high sensitivity and specificity, with adequate PPV and NPV. Conclusions: The homologous and
heterologous SARS-CoV-2 vaccination schedules induced similar IgG antibody concentrations and half-life, with potential neutralizing capacity, as confirmed by both a quantitative assay and a high-performance qualitative assay. The potential impact of homologous and heterologous vaccination schedules on IgG antibody subclasses remains an area of interest for further research.

Downloads

Download data is not yet available.

References

Ministerio de Salud del Perú. Vacuna COVID-19 en el Perú [Internet].

Lima: Ministerio de Salud del Perú; 2022. Disponible en: https://

www.minsa.gob.pe/reunis/data/vacunas-covid19.asp

Ministerio de Salud del Perú. Campaña Nacional de Vacunación contra

la COVID-19 [Internet]. Perú: Ministerio de Salud del Perú; 2025.

Disponible en: https://www.gob.pe/pongoelhombro

Our World in Data. Coronavirus (COVID-19) vaccinations [Internet].

Oxford: Global Change Data Lab;2025. Disponible en: https://

ourworldindata.org/covid-vaccinations

Pareja A, Luque JC, Bonifacio N, Neyra O, de León J. Vacuna

SINOPHARM… tres años después. Horiz Med [Internet].

;24(3):e2390. Disponible en: https://doi.org/10.24265/

horizmed.2024.v24n3.00%20

Instituto Nacional de Salud. Sala situacional COVID-19 [Internet]. Lima:

Ministerio de Salud del Perú; 2025. Disponible en: https://www.dge.gob.

pe/portal/docs/tools/coronavirus/coronavirus030624.pdf

World Health Organization. COVID-19 dashboard: cases worldwide

[Internet]. Geneva: World Health Organization; 2025. Disponible en:

https://doi.org/10.3389/fimmu.2023.1055457

Abebe EC, Dejenie TA. Protective roles and protective mechanisms of

neutralizing antibodies against SARS-CoV-2 infection and their potential

clinical implications. Front Immunol [Internet]. 2023;14:1055457.

Disponible en: https://doi.org/10.3389/fimmu.2023.1055457

Chen Y, Zhao X, Zhou H, Zhu H, Jiang S, Wang P. Broadly neutralizing

antibodies to SARS-CoV-2 and other human coronaviruses. Nat Rev

Immunol [Internet]. 2023;23:189-99. Disponible en: https://www.

nature.com/articles/s41577-022-00784-3

Pooley N, Abdool SS, Combadière B, Ooi EE, Harris RC, El Guerche C,

et al. Durability of vaccine-induced and natural immunity against

COVID-19: a narrative review. Infect Dis Ther [Internet]. 2023;12(2):367-

Disponible en: https://doi.org/10.1007/s40121-022-00753-2

Flor N, García MI, Molineri A, Bottasso O, Diez C, Veaute C. Antibodies

to SARS-CoV-2 induced by vaccination and infection correlate with

protection against the infection. Vaccine [Internet]. 2023;41(48):7206-11.

Disponible en: https://doi.org/10.1016/j.vaccine.2023.10.038

izmed.2021.v21n3.02

Silva-Valencia J, Soto-Becerra P, Escobar-Agreda S, Fernandez-Navarro M,

Moscoso-Porras M, Solari L, et al. Effectiveness of the BBIBP-CorV

vaccine in preventing infection and death in health care workers in

Peru, 2021. Travel Med Infect Dis [Internet]. 2023;53:102565. Disponible

en: https://doi.org/10.1016/j.tmaid.2023.102565

World Health Organization. The Pfizer BioNTech (BNT162b2) COVID-19

vaccine: what you need to know [Internet]. Geneva: World Health

Organization; 2024. Disponible en: https://www.who.int/newsroom/

feature-stories/detail/who-can-take-the-pfizer-biontechcovid-

--vaccine-what-you-need-to-know

Pareja A, Luque JC, Navarrete PJ, de León J, Gonzáles JD.

Respuesta inmune humoral a cuatro vacunas contra el SARS-CoV-2 en

profesionales de la salud. Horiz Med [Internet]. 2022;22(2):e1937.

Disponible en: https://doi.org/10.24265/horizmed.2022.v22n2.06

World Health Organization. The Moderna COVID-19 (mRNA-1273)

vaccine: what you need to know [Internet]. Geneva: World Health

Organization;2024. Disponible en: https://www.who.int/news-room/

feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccinewhat-

you-need-to-know

Ministerio de Salud del Perú. Carnet de vacunación contra la COVID-19

[Internet]. Lima: Ministerio de Salud del Perú; 2025. Disponible en:

https://carnetvacunacion.minsa.gob.pe/

Hajissa K, Mussa A, Karobari MI, Abbas MA, Ibrahim IK, Assiry AA,

et al. The SARS-CoV-2 antibodies, their diagnostic utility, and their

potential for vaccine development. Vaccines (Basel) [Internet].

;10(8):1346. Disponible en: https://doi.org/10.3390/

vaccines10081346

Movsisyan M, Truzyan N, Kasparova I, Chopikyan A, Sawaqed R,

Bedross A, et al. Tracking the evolution of anti-SARS-CoV-2 antibodies

and long-term humoral immunity within 2 years after COVID-19

infection. Sci Rep [Internet]. 2024;14:13417. Disponible en: https://

doi.org/10.1038/s41598-024-64414-9

Vizcaíno-Salazar GJ. Importancia del cálculo de la sensibilidad, la

especificidad y otros parámetros estadísticos en el uso de las pruebas

de diagnóstico clínico y de laboratorio. Medicina y Laboratorio

[Internet]. 2017;23(7-8):365-86. Disponible en: https://www.

medigraphic.com/pdfs/medlab/myl-2017/myl177-8e.pdf

Meijers M, Ruchnewitz D, Eberhardt J, Łuksza M, Lässig M. Population

immunity predicts evolutionary trajectories of SARS-CoV-2. Cell

[Internet]. 2023;186(23):5151-64.e13. Disponible en: https://doi.

org/10.1016/j.cell.2023.09.022

Raharinirina NA, Gubela N, Börnigen D, Smith MR, Oh D-Y, Budt M,

et al. SARS-CoV-2 evolution on a dynamic immune landscape. Nature

[Internet]. 2025;639:196-204. Disponible en: https://doi.org/10.1038/

s41586-024-08477-8

García-Mendoza M, Merino-Sarmiento N, De Lucio-Burga G, Fernández-

Navarro MG, Pampa-Espinoza L, Solis-Sánchez G, et al. Anticuerpos IgG

determinados mediante ELISA desarrollados con antígenos de linajes

Wuhan y Lambda en trabajadores de salud vacunados con BBIBPCORV.

Rev Peru Med Exp Salud Publica [Internet]. 2022;39(3):267-73.

Disponible en: http://dx.doi.org/10.17843/rpmesp.2022.393.10875

Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A,

Guruge D, Wijesinghe A, et al. Persistence of immune responses to

the Sinopharm/BBIBP-CorV vaccine. Immun Inflamm Dis [Internet].

;10(6):e621. Disponible en: https://doi.org/10.1002/iid3.621

Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, et al.

Waning immune humoral response to BNT162b2 Covid-19 vaccine over

months. N Engl J Med [Internet]. 2021;385(24):e84. Disponible en:

https://www.nejm.org/doi/10.1056/NEJMoa2114583

Doria-Rose N, Suthar M, Makowski M, O’Connell S, McDermott A, Flach B,

et al. Antibody persistence through 6 months after the second

dose of mRNA-1273 vaccine for Covid-19. N Engl J Med [Internet].

;384(23):2259-61. Disponible en: https://www.nejm.org/doi/

full/10.1056/NEJMc2103916

Gómez JC, Cáceres-DelAguila JA, Muro-Rojo C, De La Cruz-Escurra N,

Copaja-Corzo C, et al. Humoral immune response induced by the

BBIBP-CorV vaccine (Sinopharm) in healthcare workers: a cohort

study. Trop Med Infect Dis [Internet]. 2022;7(5):66. Disponible en:

https://doi.org/10.3390/tropicalmed7050066

Irrgang P, Gerling J, Kocher K, Lapuente D, Steininger P, Habenicht K,

et al. Class switch toward noninflammatory, spike-specific IgG4

antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol

[Internet]. 2023;8(79):eade2798. Disponible en: https://www.

science.org/doi/10.1126/sciimmunol.ade2798

Buhre JS, Pongracz T, Künsting I, Lixenfeld AS, Wang W, Nouta J, et al.

mRNA vaccines against SARS-CoV-2 induce comparably low long-term

IgG Fc galactosylation and sialylation levels but increasing long-term

IgG4 responses compared to an adenovirus-based vaccine. Front

Immunol [Internet]. 2023;13:1020844. Disponible en: https://doi.

org/10.3389/fimmu.2022.1020844

Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 antibodies

induced by repeated vaccination may generate immune tolerance

to the SARS-CoV-2 spike protein. Vaccines (Basel) [Internet].

;11(5):991. Disponible en: https://doi.org/10.3390/

vaccines11050991

Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S,

et al. Mechanisms and implications of IgG4 responses to SARS-CoV-2

and other repeatedly administered vaccines. J Infect [Internet].

;89(6):106317. Disponible en: https://doi.org/10.1016/j.

jinf.2024.106317

Published

2025-06-28

How to Cite

1.
Lozada-Requena I, de León J, Neyra O, Vidal A, Laymito L, Luque J, Pareja A. Humoral immunogenicity induced by homologous and heterologous SARS-CoV-2 vaccination schedules. Horiz Med [Internet]. 2025Jun.28 [cited 2025Jun.29];25(2):e3251. Available from: https://pglt.aulavirtualusmp.pe/index.php/horizontemed/article/view/3251

Issue

Section

Original article