Influence of carbohydrate intake on oxidative status among women with and without gestational diabetes mellitus

Authors

  • Jocelyn Garcia Alvarado Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Investigación en Nutrición. Toluca, Estado de México, México. Estudiante becada del Consejo Nacional de Humanidades, Ciencias y Tecnologías del doctorado en Ciencias de la Salud https://orcid.org/0000-0003-3877-7838
  • BEATRIZ ELINA MARTINEZ CARRILLO Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Investigación en Nutrición. Toluca, Estado de México, México. Doctora en Investigación en Medicina; c doctor en Endocrinología https://orcid.org/0000-0002-2663-5202
  • Hugo Mendieta Zerón Hospital Materno Perinatal “Mónica Pretellini Sáenz”. Toluca, Estado de México, México. Doctor en Endocrinología https://orcid.org/0000-0003-3492-8950
  • Rosa Adriana Jarillo Luna Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Laboratorio de Morfología. Ciudad de México, México. Doctora en Ciencias https://orcid.org/0000-0003-0467-2528
  • Irma Socorro González Sánchez Hospital Materno Perinatal “Mónica Pretellini Sáenz”. Toluca, Estado de México, México. Maestra en Nutrición Clínica https://orcid.org/0009-0003-1659-4042
  • Ivonne Maciel Arciniega Martínez Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Laboratorio de Inmunonutrición. Ciudad de México, México. Doctora en Investigación en Medicina. https://orcid.org/0000-0001-5250-7952

DOI:

https://doi.org/10.24265/horizmed.2024.v24n1.01

Keywords:

Carbohydrates , Oxidative Stress , Diabetes, Gestational , Antioxidants , Sucrose

Abstract

Objective: To identify the influence of carbohydrate (CHO) intake on oxidative status among women with and without gestational diabetes mellitus (GDM). Materials and methods: A cross-sectional, observational and comparative study was carried out with two groups of 21 women each with and without GDM in the city of Toluca, Mexico, from January to December 2022. The sociodemographic parameters were determined by administering the patients a medical history questionnaire; anthropometric parameters such as body weight and height were measured; and biochemical parameters including total cholesterol (TC) and triglycerides (TG) were calculated. The oxidant/antioxidant status was assessed as follows: malondialdehyde (MDA) as oxidative stress marker; and catalase (CAT), superoxide dismutase (SOD) and total antioxidant capacity (TAC) as antioxidants. Dietary habits were evaluated through a 24-hour reminder in both groups of women to obtain the macronutrient classes, i.e., proteins, fats and CHOs. Based on the total carbohydrates (TCHOs), complex (CCHOs) and simple carbohydrates (SCHOs) such as sucrose were calculated. SCHOs per day were measured using the list of foods with sucrose content per 100 grams according to the Mexican Food Equivalence System (SMAE). The NutriKcal VO program was used for the dietary analysis. Statistical tests such as Student’s t test and Mann-Whitney U test were performed for the independent samples and nonhomogeneous variables, respectively, and Spearman’s rank correlation coefficient (p < 0.05) was determined using the IBM SPSS Statistics V19. Results: The results showed that the difference between the levels of TC (p < 0.029), TG (p < 0.029), enzymes CAT (p < 0.011) and SOD (p < 0.013), as well as MDA (p < 0.039) was significantly higher among patients in the group with GDM compared to that in the group without GDM. In addition, the group with GDM consumed a higher proportion of sucrose. Conclusions: Women with GDM have an imbalance in the oxidant/antioxidant status, influenced by the type of CHO they consume, particularly SCHOs such as sucrose.

Downloads

Download data is not yet available.

References

Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, Hermansen K, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):2611.

Joo EH, Kim YR, Kim N, Jung JE, Han SH, Cho HY. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. Int J Mol Sci. 2021;22(18):10122.

Steller JG, Alberts JR, Ronca AE. Oxidative stress as cause, consequence, or biomarker of altered female reproduction and development in the space environment. Int J Mol Sci. 2018;19(12):3729.

Silva-Zolezzi I, Samuel TM, Spieldenner J. Maternal nutrition: opportunities in the prevention of gestational diabetes. Nutr Rev. 2017;75(suppl 1):32-50.

Sert UY, Ozgu-Erdinc AS. Gestational diabetes mellitus screening and diagnosis. Adv Exp Med Biol. 2021;1307:231-55.

Fetita L, Sobngwi E, Serradas P, Calvo F, Gautier J. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab. 2006;91(10):3718-24.

Peuchant E, Brun J, Rigalleau V, Dubourg L, Thomas M, Daniel J, et al. Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin Biochem. 2004;37(4):293-8.

Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol. 2017;77(5).

Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, SánchezMargalet V. Leptin and nutrition in gestational diabetes. Nutrients. 2020;12(7):1970.

Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342.

Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020;14(5):583-600.

Abell SK, De Courten B, Boyle JA, Teede HJ. Inflammatory and other biomarkers: role in pathophysiology and prediction of gestational diabetes mellitus. Int J Mol Sci. 2015;16(6):13442-73.

de Mendonça ELSS, Fragoso MBT, de Oliveira JM, Xavier JA, Goulart MOF, de Oliveira ACM. Gestational diabetes mellitus: The crosslink among inflammation, nitroxidative stress, intestinal microbiota and alternative therapies. Antioxidants (Basel). 2022;11(1):129.

Rasmussen L, Christensen ML, Poulsen CW, Rud C, Christensen AS, Andersen JR, et al. Effect of high versus low carbohydrate intake in the morning on glycemic variability and glycemic control measured by continuous blood glucose monitoring in women with gestational diabetes mellitus -a randomized crossover study. Nutrients. 2020;12(2):475.

Key TJ, Spencer EA. Carbohydrates and cancer: an overview of the epidemiological evidence. Eur J Clin Nutr. 2007;61(Suppl 1):S112-21.

Casas R, Castro Barquero S, Estruch R. Impact of sugary food consumption on pregnancy: a review. Nutrients. 2020;12(11):3574.

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Tablas de composición de alimentos y productos alimenticios (versión condensada 2015) [Internet]. México: INCMNSZ; 2016. Disponible en: https://www.incmnsz.mx/2019/TABLAS_ALIMENTOS.pdf

Marván L, Pérez AB. NutriKcal VO, 2005. Disponible en: www. nutrikcal.com.mx.

Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci. 2018;19(11):3342.

Alejandro EU, Mamerto TP, Chung G, Villavieja A, Gaus NL, Morgan E, et al. Gestational diabetes mellitus: a harbinger of the vicious cycle of diabetes. Int J Mol Sci. 2020;21(14):5003.

Farahvar S, Walfisch A, Sheiner E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: a literature review. Expert Rev Endocrinol Metab. 2019;14(1):63-74.

Ramos-Levi A, Barabash A, Valerio J, García de la Torre N, Mendizabal L, Zulueta M, et al. Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet. Front Endocrinol (Lausanne). 2022;13:1036088.

Kang M, Zhang H, Zhang J, Huang K, Zhao J, Hu J, et al. A novel nomogram for predicting gestational diabetes mellitus during early pregnancy. Front Endocrinol (Lausanne). 2021;12:779210.

Goran MI, Plows JF, Ventura EE. Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: evidence for a secondhand sugar effect. Proc Nutr Soc. 2019;78(3):262-71.

Wicklow B, Retnakaran R. Gestational diabetes mellitus and its implications across the life span. Diabetes Metab J. 2023;47(3):333-44.

Huang Y, Chen Z, Chen B, Li J, Yuan X, Li J, et al. Dietary sugar consumption and health: umbrella review. BMJ. 2023;381:e071609.

Sweeting A, Mijatovic J, Brinkworth GD, Markovic TP, Ross GP, Brand-Miller J, et al. The carbohydrate threshold in pregnancy and gestational diabetes: how low can we go? Nutrients. 2021;13(8):2599.

Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496.

Stefanovic V, Andersson S, Vento M. Oxidative stress - related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae. Free Radic Biol Med. 2019;142:52-60.

Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

Sert UY, Ozgu-Erdinc AS. Gestational diabetes mellitus screening and diagnosis. Adv Exp Med Biol. 2021;1307:231-55. 32. Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med. 2016;9(3):113-6.

Wang Y, Walsh SW. Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta. 2001;22(23):206-12.

Toescu V, Nuttall SL, Martin U, Kendall MJ, Dunne F. Oxidative stress and normal pregnancy. Clin Endocrinol (Oxf). 2002;57(5):609-13.

Dennery PA. Oxidative stress in development: nature or nurture? Free Radic Biol Med. 2010;49(7):1147-51.

Kharb S. Lipid peroxidation in pregnancy with preeclampsia and diabetes. Gynecol Obstet Invest. 2000;50(2):113-6.

Guo G, Zhou T, Ren F, Sun J, Deng D, Huang X, et al. Effect of maternal catalase supplementation on reproductive performance, antioxidant activity and mineral transport in sows and piglets. Animals (Basel). 2022;12(7):828.

Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36(7):709-15.

Yildirim T, Göçmen AY, Özdemir ZT, Börekci E, Turan E, Aral Y. The effect of hyperglycemic peak induced by oral glucose tolerance test on the oxidant and antioxidant levels. Turk J Med Sci. 2019;49(6):1742-47.

Rodrigues F, de Lucca L, Neme WS, Gonçalves TL. Influence of gestational diabetes on the activity of δ-aminolevulinate dehydratase and oxidative stress biomarkers. Redox Rep. 2018;23(1):63-7.

Parast VM, Paknahad Z. Antioxidant status and risk of gestational diabetes mellitus: a case-control study. Clin Nutr Res. 2017;6(2):81-8.

Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021;2021:9962860.

Schober L, Radnai D, Spratte J, Kisielewicz A, Schmitt E, Mahnke K, et al. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin Exp Immunol. 2014;177(1):76-85.

Published

2024-03-27

How to Cite

1.
Garcia Alvarado J, MARTINEZ CARRILLO BE, Mendieta Zerón H, Jarillo Luna RA, González Sánchez IS, Arciniega Martínez IM. Influence of carbohydrate intake on oxidative status among women with and without gestational diabetes mellitus. Horiz Med [Internet]. 2024Mar.27 [cited 2025Jul.18];24(1):e2479 . Available from: https://pglt.aulavirtualusmp.pe/index.php/horizontemed/article/view/2479

Issue

Section

Original article